News

Wir informieren Sie über aktuelle Projekte, Trends, Veröffentlichungen, Fördermöglichkeiten und weitere interessante Neuigkeiten aus den Innovationsfeldern des Technologielandes Hessen. 

Sie wollen auf dem Laufenden bleiben? Abonnieren Sie unseren kostenfreien, monatlich erscheinenden Newsletter! Einen Rückblick auf die vergangen Ausgaben finden Sie in unserem Newsletter-Archiv

08.01.2018

Gekrönte Häupter für die DNA-Aufnahme

Model des  DNA-Transporters in Thermus thermophilus. Der DNA-Transporter ist eine hochdynamische, makromolekulare Maschine, die aus mindestens sechszehn unterschiedlichen Untereinheiten besteht. Die Untereinheiten sind nichts maßstabsgetreu dargestellt. DNA Desoxyribonukleinsäure, ÄM - äußere Membran, PG - Peptidoglykan, IM - innere Membran. (Bild: Uni Frankfurt)

Frankfurt - Bakterien sind Überlebenskünstler. Dabei hilft ihnen die Fähigkeit, DNA aus dem Ökosystem aufzunehmen und sich so immer wieder zu verwandeln. Forscher von Goethe-Universität und Max-Planck-Institut für Biophysik haben neue Erkenntnisse darüber gewonnen, wie sie das machen.

Viele Bakterien können nackte DNA aus dem Ökosystem aufnehmen und damit neue Eigenschaften erwerben, die Ihnen ein Überleben ermöglichen. Allseits bekanntes und beklagtes Beispiel ist die Erwerbung von Antibiotika-Resistenzen, denn sie erschweren oder verhindern es, krankmachende Bakterien auszuschalten. Wie das hochkomplexe Molekül DNA in die Bakterienzelle aufgenommen wird, war jedoch lange Zeit ein Rätsel. Forschern der Goethe-Universität ist zusammen mit Wissenschaftlern des Max-Planck-Instituts für Biophysik auf dem Campus Riedberg nun ein Durchbruch gelungen.

„Wir haben erste Einblicke in einen Teil einer riesigen makromolekularen Maschine erhalten, die DNA bindet, durch die äußeren Zellschichten zieht, dabei die DNA in die beiden Einzelstränge zerlegt und dann einen Strang aufnimmt“, erklärt Professorin Beate Averhoff aus der Abteilung Molekulare Mikrobiologie und Bioenergetik des Instituts für Molekulare Biowissenschaften. Die Mikrobiologin hat diesen Erfolg gemeinsam mit den Arbeitsgruppen Kühlbrandt und Hummer (Max-Planck-Institut für Biophysik) erzielt. Teil dieser „Maschine“, die die DNA bindet und zieht, ist der sogenannte Sekretin-Komplex, dessen Struktur mit dem Kryo-Elektronenmikroskop und einer Auflösung von 7 Ångström aufgeklärt wurde (Ångström ist eine Längeneinheit, 1 A entspricht 0,1 Nanometer nm). Dieser Komplex ragt wie eine Pistole aus der Zellwand und trägt eine erst jetzt erkannte „Krone“. Genetische Studien zeigen, dass diese Krone nicht aus dem Sekretin-Protein geformt wird. Allerdings führen Mutationen in der „Pistole“ dazu, dass die Krone auseinanderfällt und die Zellen dann auch keine DNA mehr aufnehmen können – was auf eine ausschlaggebende Rolle dieses Zellteils bei diesem Vorgang hinweist.

„Mit der Krone haben wir vielleicht einen entscheidenden Schalter für die Erkennung und Bindung der DNA entdeckt“, meint Averhoff. Deshalb hat die Suche nach dem Kronenprotein in der Arbeitsgruppe von Beate Averhoff bereits begonnen. „Unsere Arbeiten tragen zum grundsätzlichen Verständnis der Übertragung von DNA bei. Aber natürlich wollen wir auch Zielstrukturen identifizieren, die man ausschalten kann, um DNA-Transfer zu unterbinden und damit z. B. die Ausbreitung von Antibiotikaresistenzen einzudämmen. Die ‚Krone‘ könnte eine solche vielversprechende Zielstruktur sein“, sagt Beate Averhoff.

Publikation: https://elifesciences.org/articles/30483; doi.org/10.7554/eLife.30483.001 

Informationen: Prof. Dr. Beate Averhoff, Professur für Molekulare Mikrobiologie und Bioenergetik, Institut für Molekulare Biowissenschaften, Campus Riedberg, Telefon 069 798-29306, E-Mail averhoff@bio.uni-frankfurt.de

Quelle: Pressemeldung Goethe-Universität Frankfurt

Hessen Trade & Invest GmbH
Technologieland Hessen

  • Mainzer Str. 118
    65189 Wiesbaden
    Tel +49 611 95017-8672
    info@technologieland-hessen.de

  • Logo Hessisches Ministerium für Wirtschaft, Energie, Verkehr und Wohnen Projektträger: Logo Hessen Trade & Invest