Förderung von transnationalen Forschungsprojekten zum Thema „Angewandte Quantenwissenschaft“ im Rahmen der gemeinsamen Förderinitiative „QuantERA III Research and Innovation Action“
Quantentechnologien bringen zahlreiche Chancen für neue Anwendungen in Industrie und Gesellschaft mit sich – in der Informationsübertragung und -verarbeitung, für höchstpräzise Mess- und Abbildungsverfahren oder für die Simulation komplexer Systeme. Anwendungsszenarien beziehen sich darauf, die Magnetfelder des Gehirns zu vermessen und neurodegenerative Krankheiten (Alzheimer- oder Parkinson-Krankheit) besser zu verstehen. Ebenso ist denkbar, dass mit Quantencomputern Verkehrsflüsse und Logistikströme optimiert werden können oder die Entwicklung neuer Werkstoffe oder chemischer Katalysatoren ausschließlich auf der Grundlage von Simulationen gelingt. Quantentechnologien schaffen dafür die Basis und haben das Potenzial, heute vorhandene technische Lösungen, etwa in der Sensorik oder beim Computing, deutlich zu übertreffen.
Übergeordnetes Ziel dieser Fördermaßnahme ist es, quantenbasierte Lösungen in Anwendungsfelder jenseits der akademischen Forschung zu überführen.
Gefördert werden transnationale Forschungs- und Entwicklungsverbundprojekte zum Thema angewandte Quantenwissenschaft (AQS) in den folgenden Bereichen:
- Quantenkommunikation,
zum Beispiel Methoden/Werkzeuge/Materialien/Strategien zur Verbesserung von Reichweite, Zuverlässigkeit, Effizienz, Robustheit und Sicherheit in der Quantenkommunikation; neuartige Protokolle für die mehrkanalige Quantenkommunikation; Quantenspeicher- und Quantenrepeaterkonzepte; neuartige photonische Quellen für Quanten¬information und Quantenkommunikation; integrierte Quantenphotonik; in optische Telekommunikationssysteme eingebettete Quantenkommunikation; Methoden zur Quantenkommunikation im Weltraum, zwischen Satelliten und Erde. - Quantensimulation,
zum Beispiel Plattformen und Materialien für die Quantensimulation; Entwicklung neuer Mess- und Kontrolltechniken und von Strategien für die Verifikation von Quantensimulationen; Anwendung von Quantensimulationen in Materialentwicklung, Chemie, Thermodynamik, Biologie und anderen Gebieten. - Quantencomputing,
zum Beispiel Entwicklung von Noisy Intermediate-Scale Quantum (NISQ) Plattformen; Geräte zur Realisierung von Multiqubit-Algorithmen; Schnittstellen zwischen Quantencomputern und Kommunikationssystemen; neue Architekturen und Programmierparadigmen für Quantenberechnungen, einschließlich hybrider Ansätze. - Quantenmetrologie, Sensorik und Bildgebung,
zum Beispiel Nutzung von Quanteneigenschaften für Zeit- und Frequenzstandards, lichtbasierte Kalibrierung und Messung, Gravimetrie, Magnetometrie, Beschleunigungsmessung und andere Anwendungen; Mikro- und Nano-Quantensensoren; neue medizinische Diagnosewerkzeuge. - Quanteninformationswissenschaften,
zum Beispiel neuartige Quellen für nicht klassische Zustände und Methoden zur Erzeugung solcher Zustände; geräteunabhängige Quanteninformatik. 
Die Aufzählung ist beispielhaft und nicht als vollständig anzusehen. Als wesentlich wird vielmehr erachtet, dass Projektvorschläge konkrete Zielsetzungen haben, die sich aus realen Bedarfen jeweils klar benannter Anwendungsfelder ableiten.