News

Wir informieren Sie über aktuelle Projekte, Trends, Veröffentlichungen, Fördermöglichkeiten und weitere interessante Neuigkeiten aus den Innovationsfeldern des Technologielandes Hessen. 

Sie wollen auf dem Laufenden bleiben? Abonnieren Sie unseren kostenfreien, monatlich erscheinenden Newsletter! Einen Rückblick auf die vergangen Ausgaben finden Sie in unserem Newsletter-Archiv

07.06.2023

Bakterienenzym formt molekulares Stromkabel

Eine deutsch-polnische Forschungsgruppe entdeckt neue Struktur mit großem biotechnologischem Potential. 

Anders als ähnliche Enzyme anderer Mikroorganismen besteht AOR des Bakteriums Aromatoleum aromaticum aus drei Untereinheiten, die zusammen ein Nanokabel bilden. © Fidel Ramírez-Amador

Einer Forschungsgruppe um die Marburger Biochemiker Dr. Jan Schuller und Professor Dr. Johann Heider sowie Professor Dr. Maciej Szaleniec aus Krakau ist es gelungen, mittels kryogener Elektronenmikroskopie die Struktur des Enzyms AOR aus dem Bakterium Aromatoleum aromaticum aufzudecken. „Das Bakterium nutzt dieses Molekül, um umweltschädliche Aldehydverbindungen abzubauen, es besitzt im Gegensatz zu anderen Enzymen mit ähnlicher Funktion aber auch die Fähigkeit, die biotechnologisch hoch interessante Rückreaktion zu katalysieren und somit Bioalkohole herzustellen“, erklärt Schullers Mitarbeiter Fidel Ramírez-Amador, einer der Leitautoren des Fachaufsatzes.

Das Team entdeckte, dass dieses Enzym ein Stromkabel durch die Zelle bildet. „Damit erhöht das Enzym sowohl seine Stabilität als auch seine Effizienz deutlich“, sagt Szaleniecs Mitarbeiterin Agnieszka Winiarska, eine weitere Leitautorin. „Das Enzym verwendet eine Kette von Elektronen-leitenden Cofaktoren in einer filamentösen Anordnung“, legt Schuller dar, der die Forschungsarbeit zusammen mit Heider leitete. „Die meisten ähnlichen Metalloproteine dieser Familie weisen eine starke Sensibilität gegenüber Sauerstoff auf, was eine biotechnologische Anwendung stark erschwert. Dagegen zeigt AOR aus Aromatoleum aromaticum eine hohe Sauerstoffstabilität, die vermutlich durch seine außergewöhnliche molekulare Architektur begründet ist“, ergänzt Heider. Das Team berichtet im Wissenschaftsmagazin „Science Advances“ über seine Ergebnisse.

Aromatoleum aromaticum vermag organische Schadstoffe abzubauen und gilt somit als guter Kandidat für biotechnologische Anwendungen. „Wie viele andere Mikroorganismen erweitert dieser Stamm das Repertoire seines Stoffwechsels, indem er Übergangsmetalle in Enzyme einbaut, zum Beispiel Wolfram“, erläutert Schuller. Das gilt auch für das in dieser Studie untersuchte Enyzm der Aldehyd-Oxidoreduktase, kurz AOR. Dieses Wolfram-haltige Enyzm katalysiert die Elektronenabgabe von Aldehydverbindungen. „AOR- Enzyme sind die einzigen bekannten Biokatalysatoren, die auch die thermodynamisch schwierige Umkehrreaktion bewerkstelligen, wenn geeignete Elektronenspender zur Verfügung stehen“, führt Fidel Ramírez-Amador aus. „Obwohl AOR-Enzyme so hochentwickelte Reaktionen durchführen können, ist unser Wissen über ihre Struktur und den Mechanismus ihrer Funktion bisher spärlich“, konstatiert Heider.

„Überraschenderweise fanden wir, dass sich mehrere Enzymuntereinheiten zu kurzen Filamenten aneinanderreihen“, berichtet Ramírez-Amador. Diese Untereinheit ähnelt dem eisen- und schwefelhaltigen Protein Ferredoxin, das beim Elektronentransport mitwirkt. „Die entstehende Struktur gleicht somit einem elektronenleitenden Nanodraht“, sagt Schuller. „Der filamentöse Kern des Enzyms wird von den katalytischen Untereinheiten umhüllt wie ein Kupferkabel von einem Plastikmantel. Diese Architektur schirmt den Nanodraht ab und bietet gleichzeitig die Möglichkeit, den Komplex mit vielen Elektronen aufzuladen.“

Die Forschungsergebnisse kamen in interdisziplinärer Zusammenarbeit zwischen dem Zentrum für Synthetische Mikrobiologie (SYNMIKRO) der Philipps-Universität und Professor Dr. Maciej Szaleniec vom Jerzy-Haber-Institut für Katalyse und Oberflächenchemie der Polnischen Akademie der Wissenschaften mit seiner Mitarbeiterin Agnieszka Winiarska zustande.

Die molekulare Zell- und Mikrobiologie zählt zu den Forschungsschwerpunkten der Philipps-Universität Marburg. Jan Michael Schuller leitet eine Emmy-Noether-Gruppe am Zentrum für Synthetische Mikrobiologie (SYNMIKRO) und am Fachbereich Chemie der Universität. Vor Kurzem erhielt er einen ERC Starting Grant des europäischen Forschungsrates. Johann Heider lehrt Mikrobielle Biochemie am Marburger Fachbereich Biologie.

Die Daten für die kryogene Elektronenmikroskopie wurden von Simone Prinz vom Max-Planck-Institut für Biophysik in Frankfurt am Main aufgenommen. Die Europäische Organisation für Molekularbiologie, die Europäische Gemeinschaft, das Nationale Wissenschaftszentrum Polens und die Deutsche Forschungsgemeinschaft unterstützten die wissenschaftliche Arbeit finanziell.

Hessen Trade & Invest GmbH
Technologieland Hessen

  • Mainzer Str. 118
    65189 Wiesbaden
    Tel +49 611 95017-8672
    info@technologieland-hessen.de

  • Logo Hessisches Ministerium für Wirtschaft, Energie, Verkehr und Wohnen Projektträger: Logo Hessen Trade & Invest